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The application of machine learning
algorithms in multivariate statistical

analysis

Cong Gu
2, 3

Abstract. Machine learning and statistics are closely related �elds. The ideas of machine

learning, from methodological principles to theoretical tools, have had a long pre-history in mul-

tivariate statistical analysis. Principal Component Analysis (PCA) is one of the most important

methods in the multivariate statistical analysis, which can be a goal in itself (discovering hidden

patterns in data) or a means towards an end (feature learning). In this paper, PCA was discussed

and combed out under the framework of machine learning by introducing the encoder function and

Frobenius norm. These two approaches to build and to solve PCA model were given, and machine

learning takes a much more e�cient algorithm in principal component analysis, rather than the

traditional statistical approach in the multivariate statistical analysis.

Key words. Machine learning, principal component analysis (PCA), encoder function,

Frobenius norm.

1. Introduction

Machine learning is a �eld of computer science that gives computers the ability
to learn without being explicitly programmed. Machine learning tasks are typi-
cally classi�ed into three broad categories, depending on the nature of the learning
"signal" or "feedback" available to a learning system, as following:

(1) Supervised learning [1]. The computer is presented with example inputs and
their desired outputs, given by a "teacher", and the goal is to learn a general rule
that maps inputs to outputs.

(2) Unsupervised learning [2,3]. No labels are given to the learning algorithm,
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leaving it on its own to �nd structure in its input. Unsupervised learning can be
a goal in itself (discovering hidden patterns in data) or a means towards an end
(feature learning).

(3) Reinforcement learning [4,5]. A computer program interacts with a dynamic
environment in which it must perform a certain goal (such as driving a vehicle or
playing a game against an opponent). The program is provided feedback in terms
of rewards and punishments as it navigates its problem space.

The principal component analysis was invented in 1901 by Karl Pearson as an
analogue of the principal axis theorem in mechanics; it was later independently
developed and named by Harold Hotelling in the 1930s. Depending on the �eld
of application, it is also named the discrete Karhunen-Loève Transform (KLT) in
signal processing, the Hotelling Transform in multivariate quality control, the Proper
Orthogonal Decomposition (POD) in mechanical engineering, etc. Machine learning
takes a much more e�cient algorithm in the principal component analysis (PCA),
which is one of the most important methods in the multivariate statistical analysis,
rather than the traditional statistical approach[6,7].

2. Methodology

Let X1, X2, . . . , Xn be the features of some type of data, such as several courses'
scores of a student, several performance parameters of an automobile (i.e., maximum
speed, turn radius, and so on), etc.

Now we are given dataset of m observations Xi; i = 1, · · · ,m , and Xi ∈ Rn for
each i( n << m). Thus we could use the following data matrix X ∈ Rm×n:

X =


x
(1)
1 . . . x

(1)
n

...
. . .

...

x
(m)
1 · · · x

(m)
n

 (1)

The i-th row represents n features of the point X(i), and the j-th column repre-
sents m observations of the j-th feature Xj .

Suppose we want to visualize the m observations with measurements on a set of n
features X1, X2, . . . , Xn, as part of an exploratory data analysis. We could do this by
examining 2D scatter plots of the data, each of which contains the m observations'
measurements on two of the features. If n is large, it will be impossible to look
at all of them. Besides, most likely none of them will be informative since they
each contain just a small fraction of the total information present in the dataset.
We would like to �nd a low-dimensional representation of the data that captures as
much of the information as possible.

The principal component analysis (PCA) provides a tool to do this. The central
idea of PCA is to reduce the dimensionality of a dataset which consists of a large
number of interrelated variables, while retaining as much as possible of the variation
present in the dataset. This is achieved by transforming to a new set of variables,
the principal components (PCs), which are uncorrelated and ordered so that the
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�rst few retain most of the variation present in all of the original variables.
The �rst PC Y1 of the features X1, X2, . . . , Xn is the normalized linear combina-

tion of the features as follows:

Y1 = l11X1 + l12X2 + · · ·+ l1nXn (2)

that has the largest variance. By the word �normalized�, we mean that
∑n

j=1 l
2
1j =

1. We refer to the l1i(i = 1, . . . , n) as the loadings of the �rst PC, and L1 =
(l11, l12, . . . , l1n)

T is called the PC loading vector.
Given a m × n dataset X described by Eq. (1), how do we compute the �rst

principal component? Since we are only interested in variance, we assume that each
of the variables in X has been centered to have mean zero (that is, the column means
of X are zero). We then look for the linear combination of the sample feature values
of the form

y
(i)
1 = l11x

(i)
1 + l12x

(i)
2 + · · ·+ l1nx

(i)
n (3)

that has largest sample variance, subject to the constraint that
∑n

j=1 l
2
1j = 1.

In other words, the �rst principal component loading vector solves the optimization
problem

max
l11,...,l1n

 1

n

m∑
i=1

 n∑
j=1

lijx
(i)
j

2
Subjectto

n∑
j=1

l21j = 1 (4)

From Eq. (3), we can write the objective in Eq. (4) as 1
n

∑m
i=1(y

(i)
1 )2. Since

1
n

∑m
i=1 x

(i)
1 = 0, the average of the y

(1)
1 , y

(2)
1 , · · · , y(m)

1 will be zero as well. So the
objective that we are maximizing in Eq. (4) is just the sample variance of the m

values of y
(i)
1 . We refer to y

(1)
1 , y

(2)
1 , · · · , y(m)

1 as the scores of the �rst PC.
After the �rst PC Y1 of the features has been determined, the second PC is the

linear combination ofX1, X2, . . . , Xn that has maximal variance out of all linear com-

binations that are uncorrelated with Y1. The second PC scores y
(1)
2 , y

(2)
2 , · · · , y(m)

2

take the form

y
(i)
2 = l12x

(i)
1 + l22x

(i)
2 + · · ·+ l2nx

(i)
n (5)

where L2 = (l21, l22, . . . , l2n)
T is the second PC loading vector. It turns out that

constraining Y2 to be uncorrelated with Y1 is equivalent to constraining L2 to be
orthogonal to L1.

Finally, we get k principal components Y1, Y2, . . . , Yk, where k ≤ n, as follows:
Y1 = l11X1 + l12X2 + · · ·+ l1nXn

Y2 = l21X1 + l22X2 + · · ·+ l2nXn

...
Yk = lk1X1 + lk2X2 + · · ·+ lknXn

(6)
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Each PC is a linear combination of the original variables, and uncorrelated with
each other.

3. Results and discussion

3.1. PCA under the framework of machine learning

Suppose we have a collection of mobservations {X(1), · · · , X(m)} in Rn. And
we would like to apply �lossy compression� to these points under the framework of
machine learning. Here, lossy compression means storing these points in a way that
requires less memory but may lose some precision.

First of all, we encode these points to represent a lower-dimensional version of
them. For each input X(i) ∈ Rn, we will �nd a corresponding code vector Y (i) ∈ Rk.
If k is smaller than n, it will take less memory to store the code points than the
original data. We will want to �nd some encoding function that produces the code
for an input,f(x) = y, and a decoding function that produces the reconstructed
input given its code, x ≈ g(y) = g(f(x)).

PCA is de�ned by our choice of the decoding function. Speci�cally, to make the
decoder very simple, we choose to use matrix multiplication to map the code back
into Rn. Let g(y) = Dy, where D ∈ Rn×k is the matrix de�ning the decoding.
Computing the optimal code for this decoder could be a di�cult problem. To keep
the encoding problem easy, PCA constrains the columns of D to be orthogonal to
each other, and all of the columns of D to have unit norm.

In order to turn this basic idea into an algorithm, the �rst thing we need to do
is �gure out how to generate the optimal code point y∗ for each input point x. One
way to do this is to minimize the distance between the input x and its reconstruction
g(y∗). We can measure this distance using the squared L2 norm:

y∗ = argmin
y

‖x− g(y)‖22 (7)

In the �eld of machine learning, the function we want minimize or maximize is
called the objective function or criterion. When we are minimizing it, we may also
call it the cost function, loss function, or error function.

Theorem 1. The solution of the optimization problem described by Eq.
(7), is

y∗ = DTx (8)

Proof: The function being minimized simpli�es to

(x− g(y))T (x− g(y)) = xTx− 2xT g(y) + g(y)T g(y)

We can rewrite the optimization problem again, to omit the �rst term, since this
term does not depend on y:
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y∗ = argmin
y

−2xT g(y) + g(y)T g(y)

By substituting in the de�nition of g(y):

y∗ = argmin
y

−2xTDy + yTDTDy = argmin
y

−2xTDy + yT y

Finally, solve this optimization problem using vector calculus:

∇y(−2xTDy + yT y) = 0

−2DTx+ 2y = 0

y = DTx
This makes the algorithm e�cient: we can optimally encode x just using a matrix-

vector operation. To encode a vector, we apply the encoder function

f(x) = DTx (9)

Using a further matrix multiplication, we can also de�ne the PCA reconstruction
operation:

r(x) = g(f(x)) = DDTx (10)

The last thing is to choose the encoding matrix D. In order to do this, we revisit
the idea of minimizing the distance between inputs and reconstructions. However,
since we will use the same matrix D to decode all of the points, we can no longer
consider the points in isolation. Instead, we must minimize the Frobenius norm
‖A‖F of the matrix of errors computed over all dimensions and all points:

D∗ = argmin
D

‖A‖F = argmin
D

√∑
i,j

A2
i,jsubjecttoD

TD = Il (11)

where

Ai,j = x
(i)
j − r(x(i))j . (12)

To derive the algorithm for �nding D∗, we will start by considering the case
where k = 1. In this case, D is just a single vector d. Substituting Eq. (10) and Eq.
(12) into Eq. (11) and simplifying D into d, the optimization problem reduces to

d∗ = argmin
d

∥∥∥x(i) − ddTx(i)
∥∥∥2
2
subjectto ‖d‖2 = 1 (13)

Theorem 2. The optimal d∗ in Eq. (13) is given by the eigenvector
XTX corresponding to the largest eigenvalue.

Proof. It is more conventional to write scalar coe�cients on the left of vector
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they operate on. We therefore usually write such a formula as

d∗ = argmin
d

∥∥x(i) − dTx(i)d
∥∥2
2
subject to ‖d‖2 = 1

or, exploiting the fact that a scalar is its own transpose, as

d∗ = argmin
d

∥∥x(i) − x(i)T dd
∥∥2
2
subject to ‖d‖2 = 1

Rewrite the problem in terms of a single design matrix of examples, rather than
a sum over separate example vectors. Let X ∈ Rm×n be the matrix de�ned by Eq.
(1), such that Xi,: denotes the i-th row of X. i.e., the i-th observation of the dataset.
We can now rewrite the problem as

d∗ = argmin
d

∥∥X −XddT
∥∥2
F
subject to dT d = 1

Disregarding the constraint for the moment, we can simplify the Frobenius norm
portion as follows:

argmin
d

∥∥X −XddT
∥∥2
F

= argmin
d

Tr
((

X −XddT
)T (

X −XddT
))

= argmin
d

Tr
(
XTX

)
− Tr

(
XTXddT

)
− Tr

(
ddTXTX

)
+ Tr

(
ddTXTXddT

)
= argmin

d
−2Tr

(
XTXddT

)
+ Tr

(
ddTXTXddT

)
= argmin

d
−2Tr

(
XTXddT

)
+ Tr

(
XTXddT ddT

)
= argmin

d
−Tr

(
XTXddT

)
= argmax

d
Tr
(
XTXddT

)
At this point, we re-introduce the constraint:
d∗ == argmax

d
Tr
(
XTXddT

)
subject to dT d = 1

This optimization problem may be solved using eigendecompsition. Speci�cally,
the optimal d is given by the eigenvector XTX corresponding to the largest eigen-
value.

In the general case, where k > 1, the matrix D is given by the l eigenvectors
corresponding to the largest eigenvalues.

3.2. An example

Suppose we are given the dataset of 100 students' examination scores of 6 courses
(see Table 1). The question is:

(1) Can we use one or two variables to represent the 6 variables of the data.
(2) How much of the original information do the one or two integrated variables
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contain.
(3) Can we use the integrated variables to sort out the students.

Table 1.The data of 100 students' examination scores of 6 courses

Student ID MATH PHYS CHEM LITERAT HISTORY ENGLISH

1 65 61 72 84 81 69

2 77 77 76 64 70 55

3 67 63 49 65 67 57

4 80 69 75 74 74 63

5 74 70 80 84 81 74

6 78 84 75 62 71 64

7 66 71 67 52 65 57

8 77 71 57 72 86 71

9 83 100 79 41 67 50

. . . . . . . . . . . . . . . . . . . . .

The data points in the case are six dimensional, that is, each observation is a
point in the 6 dimensional space. We want to represent 6 dimensional space in a
lower dimensional space.

Let's think about an easier case. Assume that only two variables are represented
by the horizontal and vertical coordinates, therefore each observation has two coor-
dinates corresponding to the two axis value. If the data form an oval shaped lattice
(which is possible under the assumption that the variables under normal). So this
ellipse has a long axis and a short axis (see Figure 1). In the short axis direction,
the data changes little, and in the extreme case, if degenerate into a short axis, the
long axis direction can only explain the change of these points. In this way, from
2D to 1D dimensionality reduction naturally completed.

Fig. 1. Plot of observations on two variables

When the coordinate axis is parallel to the axis of the ellipse, the variables
representing the long axis describe the main changes of the data, while the variables
representing the short axis describe the minor changes of the data. However, the
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coordinate axis is usually not parallel to the axis of the ellipse. Therefore, it is
necessary to �nd the minor axis of the ellipse and transform it so that the new
variable is parallel to the axis of the ellipse.

If the axis variable represents most of the information contained in the data,
using these two variables instead of the original variables, and the dimensionality
reduction is done.

The situation of multidimensional variables is similar to that of two dimensions.
There are also high dimensional ellipsoids, but they can't be seen directly. Firstly, the
principal axis of the ellipsoid of high dimension is found out, and then the longest
axis representing most of the data information is used as the new variable, then
principal component analysis is basically completed. Note that, similar to the two-
dimensional case, the principal axes of the high dimensional ellipsoid are orthogonal
to each other. These mutually orthogonal new variables are linear combinations of
the original variables, which we have already de�ned as the principal components
(PCs). The fewer the principal components, the better the dimensionality reduction.
What is the standard? Some literatures suggest that the total length of the spindle
selected is about 85% of the total length of the spindle.

Back to the example. We solve this problem by PCA.

Table 2. The total variance explained of the 6 eigenvalues

Component Initial Eigenvalues Extraction Sums of Squared Load-
ings

Total Vari-
ance

% of Vari-
ance

Cumulative
%

Total
Variance

% of Vari-
ance

Cumulative
%

1 3.735 62.254 62.254 3.735 62.254 62.254

2 1.133 18.887 81.142 1.133 18.887 81.142

3 0.457 7.619 88.761

4 0.323 5.376 94.137

5 0.199 3.320 97.457

6 0.153 2.543 100.000

The cumulative value of the �rst two components accounted for 81.142% of the
total variance. The contribution of the posterior eigenvalues is less and less.

Table 3. The principal component matrix
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Component

1 2 3 4 5 6

MATH -0.806 0.353 -0.040 0.468 0.021 0.068

PHYS -0.674 0.531 -0.454 -0.240 -0.001 -0.006

CHEM -0.675 0.513 0.499 -0.181 0.002 0.003

LITERAT 0.893 0.306 -0.004 -0.037 0.077 0.320

HISTORY 0.825 0.435 0.002 0.079 -0.342 -0.083

ENGLISH 0.836 0.425 0.000 0.074 0.276 -0.197

Here each column represents the coe�cient (proportion) of a principal component
as a linear combination of the original variables. For example, the �rst principal
component serves as a linear combination of six original variables, mathematics,
physics, chemistry, literature, history and English, with coe�cients (proportions) of
-0.806, -0.674, -0.675, 0.893, 0.825, 0.836.

Let X1, · · · , X6 to represent the original six variables, and Y1, · · · , Y6 to represent
the new principal component. Then, the relationship between X1, · · · , X6 and the
�rst and second principal components Y1, Y2 is as follows:

X1 = −0.806Y1 + 0.353Y2

X2 = −0.674Y1 + 0.531Y2

X3 = −0.675Y1 + 0.513Y2

X4 = 0.893Y1 + 0.306Y2

X5 = 0.825Y1 + 0.435Y2

X6 = 0.836Y1 + 0.425Y2

These coe�cients are the principal component loadings, which represent the cor-
relation coe�cients between the principal components and the corresponding original
variables. The greater the absolute value of the correlation coe�cient, the greater
the representativeness of the principal component to the variable. It can be seen
that the �rst principal component explains all variables very well. The last principal
component and the original variable are less relevant.

4. Conclusion

PCA is one of the unsupervised learning algorithms, which can be a goal in itself
(discovering hidden patterns in data) or a means towards an end (feature learning).
Machine learning takes a much more e�cient algorithm in PCA, rather than the
traditional statistical approach. Machine learning and statistics are closely related
�elds. The ideas of machine learning, from methodological principles to theoreti-
cal tools, have had a long pre-history in statistics. Leo Breiman distinguished two
statistical modeling paradigms: data model and algorithmic model, wherein "algo-
rithmic model" means more or less the machine learning algorithms like Random
forest[8]. Some statisticians have adopted methods from machine learning, leading
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to a combined �eld that they call statistical learning[9]. Recently, deep Learning is a
new area of machine learning research, which has been introduced with the objective
of moving machine learning closer to one of its original goals: Arti�cial Intelligence,
and has attracted much attention from scholars and research institutions [10].
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